
Coinsult

Advanced Manual

Smart Contract Audit
October 26, 2022

 CoinsultAudits

 info@coinsult.net

 coinsult.net

Audit requested by

ShoshinInu
0x296090c2544dcc429cda0d6b2869914d0152f9f3

Request your audit at coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult

6.2 Notes by ShoshinInu

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

ShoshinInu / Security Audit

Audit Summary
Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

ShoshinInu / Security Audit

ShoshinInu

https://shoshininu.com/

Ethereum

Solidity

0x296090c2544dcc429cda0d6b2869914d0152f9f3

Static Analysis, Manual Review

26 October 2022

https://shoshininu.com/

Audit Scope
Source Code

Coinsult was comissioned by ShoshinInu to perform an audit based on the following code:

https://etherscan.io/address/0x296090c2544dcc429cda0d6b2869914d0152f9f3#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract
address on this audit report and compare it to the token you are doing research for.

Tokenomics

Rank Address Quantity (Token) Percentage

1 0x5d5f9d4ee5df08c34b6d167890061593220b8c72 100,000 100.0000%

ShoshinInu / Security Audit

https://etherscan.io/token/0x296090c2544dcc429cda0d6b2869914d0152f9f3?a=0x5d5f9d4ee5df08c34b6d167890061593220b8c72

Audit Method
Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest
improvements and ways to fix them.

 Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,
integer-underflow, out-of-gas-situations, unchecked transfers, etc.

 Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into
consideration.

 Used Tools

 Slither: Solidity static analysis framework
 Remix: IDE Developer Tool
 CWE: Common Weakness Enumeration
 SWC: Smart Contract Weakness Classification and Test Cases
 DEX: Testnet Blockchains

ShoshinInu / Security Audit

Risk Classification
Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status

Total

Pending

Acknowledged

Resolved

ShoshinInu / Security Audit

Description

Does not compromise the functionality of the contract in any way

Won't cause any problems, but can be adjusted for improvement

Will likely cause problems and it is recommended to adjust

Will definitely cause problems, this needs to be adjusted

Description

Total amount of issues within this category

Risks that have yet to be addressed by the team

The team is aware of the risks but does not resolve them

The team has resolved and remedied the risk

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

ShoshinInu / Security Audit

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege

Owner can mint?

Owner can blacklist?

Owner can set fees > 25%?

Owner can exclude from fees?

Owner can pause trading?

Owner can set Max TX amount?

More owner priviliges are listed later in the report.

ShoshinInu / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

6 6 0 0

1 1 0 0

3 3 0 0

Description

 Owner cannot mint new tokens

 Owner can blacklist addresses

 Owner cannot set the sell fee to 25% or higher

 Owner can exclude from fees

 Owner cannot pause the contract

 Owner cannot set max transaction amount

Error Code

SLT: 056

 Low-Risk: Could be fixed, will not bring problems.

No zero address validation for some functions
Detect missing zero address validation.

function function updateMarketingWalletupdateMarketingWallet((address newWalletaddress newWallet)) externalexternal onlyOwner onlyOwner {{

 marketingWallet marketingWallet == newWallet newWallet;;

}}

function function updateDevWalletupdateDevWallet((address newWalletaddress newWallet)) externalexternal onlyOwner onlyOwner {{

 devWallet devWallet == newWallet newWallet;;

}}

Recommendation
Check that the new address is not zero.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

Bob calls updateOwner without specifying the newOwner, soBob loses ownership of the contract.

ShoshinInu / Security Audit

Description

Missing Zero Address Validation

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

Error Code

SLT: 016

 Low-Risk: Could be fixed, will not bring problems.

Functions that send Ether to arbitrary destinations
Unprotected call to a function sending Ether to an arbitrary address.

function function rescueETHrescueETH((uint256 weiAmountuint256 weiAmount)) externalexternal onlyOwner onlyOwner {{

 payablepayable((devWalletdevWallet))..transfertransfer((weiAmountweiAmount));;

}}

Recommendation
Ensure that an arbitrary user cannot withdraw unauthorized funds.

Exploit scenario

contract ArbitrarySendcontract ArbitrarySend{{

 address destination address destination;;

 function function setDestinationsetDestination(()){{

 destination destination == msg msg..sendersender;;

 }}

 function function withdrawwithdraw(()) publicpublic{{

 destination destination..transfertransfer((thisthis..balancebalance));;

 }}

}}

Bob calls setDestination and withdraw. As a result he withdraws the contract’s balance.

ShoshinInu / Security Audit

Description

Functions that send Ether to arbitrary destinations

https://github.com/crytic/slither/wiki/Detector-Documentation#functions-that-send-ether-to-arbitrary-destinations

Error Code

SWC-104

 Low-Risk: Could be fixed, will not bring problems.

Unchecked transfer
The return value of an external transfer/transferFrom call is not checked.

function function rescueERC20rescueERC20((address tokenAddaddress tokenAdd,, uint256 amount uint256 amount)) externalexternal onlyOwner onlyOwner {{

 IERC20IERC20((tokenAddtokenAdd))..transfertransfer((devWalletdevWallet,, amount amount));;

}}

Recommendation
Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

Exploit scenario

contract Token contract Token {{

 function function transferFromtransferFrom((address _fromaddress _from,, address _to address _to,, uint256 _value uint256 _value)) publicpublic returnsreturns ((bool successbool success));;

}}

contract MyBankcontract MyBank{{

 mappingmapping((address address ==>> uint uint)) balances balances;;

 Token token Token token;;

 function function depositdeposit((uint amountuint amount)) publicpublic{{

 token token..transferFromtransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount));;

 balances balances[[msgmsg..sendersender]] +=+= amount amount;;

 }}

}}

Several tokens do not revert in case of failure and return false. If one of these tokens is used
in MyBank, deposit will not revert if the transfer fails, and an attacker can call deposit for free..

ShoshinInu / Security Audit

Description

CWE-252: Unchecked Return Value

https://cwe.mitre.org/data/definitions/252.html

Error Code

SLT: 054

 Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic
Detect missing events for critical arithmetic parameters.

function function SetBuyTaxesSetBuyTaxes((

 uint256 _marketing uint256 _marketing,,

 uint256 _liquidity uint256 _liquidity,,

 uint256 _dev uint256 _dev

)) externalexternal onlyOwner onlyOwner {{

 requirerequire((((_marketing _marketing ++ _liquidity _liquidity ++ _dev _dev)) < <;== 33,, " ";Must keep fees at Must keep fees at 33%% oror less" less";));;

 taxes taxes == TaxesTaxes((_marketing_marketing,, _liquidity _liquidity,, _dev _dev));;

}}

Recommendation
Emit an event for critical parameter changes.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

ShoshinInu / Security Audit

Description

Missing Events Arithmetic

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

Error Code

SWC-135

 Low-Risk: Could be fixed, will not bring problems.

Code With No Effects
Detect the usage of redundant statements that have no effect.

function function _msgData_msgData(()) internalinternal view virtual view virtual returnsreturns ((bytes calldatabytes calldata)) {{

 thisthis;; // silence state mutability warning without generating bytecode - see https://github.com/ether// silence state mutability warning without generating bytecode - see https://github.com/ether
 returnreturn msg msg..datadata;;

}}

Recommendation
Remove redundant statements if they congest code but offer no value.

Exploit scenario

contract RedundantStatementsContract contract RedundantStatementsContract {{

 constructorconstructor(()) publicpublic {{

 uint uint;; // Elementary Type Name// Elementary Type Name

 bool bool;; // Elementary Type Name// Elementary Type Name

 RedundantStatementsContract RedundantStatementsContract;; // Identifier// Identifier

 }}

 function function testtest(()) publicpublic returnsreturns ((uintuint)) {{

 uint uint;; // Elementary Type Name// Elementary Type Name

 assert assert;; // Identifier// Identifier

 test test;; // Identifier// Identifier

 returnreturn 777777;;

 }}

}}

Each commented line references types/identifiers, but performs no action with them, so no code will
be generated for such statements and they can be removed.

ShoshinInu / Security Audit

Description

CWE-1164: Irrelevant Code

https://cwe.mitre.org/data/definitions/1164.html

Error Code

SLT: 076

 Low-Risk: Could be fixed, will not bring problems.

Costly operations inside a loop
Costly operations inside a loop might waste gas, so optimizations are justified.

function function airdropTokensairdropTokens((addressaddress[[]] memory accounts memory accounts,, uint256 uint256[[]] memory amounts memory amounts)) externalexternal onlyOwner onlyOwner{{

 requirerequire((accountsaccounts..length length ==== amounts amounts..lengthlength,, "Arrays must have same size""Arrays must have same size"));;

 forfor((uint256 iuint256 i;; i< i<; accounts accounts..lengthlength;; i i++++)){{

 supersuper.._transfer_transfer((msgmsg..sendersender,, accounts accounts[[ii]],, amounts amounts[[ii]]));;

 }}

}}

Recommendation
Use a local variable to hold the loop computation result.

Exploit scenario

contract CostlyOperationsInLoopcontract CostlyOperationsInLoop{{

 function function badbad(()) externalexternal{{

 forfor ((uint iuint i==00;; i i << loop_count loop_count;; i i++++)){{

 state_variable state_variable++++;;

 }}

 }}

 function function goodgood(()) externalexternal{{

 uint local_variable uint local_variable == state_variable state_variable;;

 forfor ((uint iuint i==00;; i i << loop_count loop_count;; i i++++)){{
 local_variable local_variable++++;;

 }}

 state_variable state_variable == local_variable local_variable;;

 }}

}}

Incrementing state_variable in a loop incurs a lot of gas because of expensive SSTOREs, which might
lead to an out-of-gas.

ShoshinInu / Security Audit

Description

Costly operations in a loop

https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop

Error Code

CSM-01

 Medium-Risk: Should be fixed, could bring problems.

Max Sell limit also triggered when transferring from wallet to wallet

ifif ((

 sender sender !=!= pair & pair &;&&; !!exemptFeeexemptFee[[recipientrecipient]] & &;&&; !!exemptFeeexemptFee[[sendersender]] & &;&&; !!_liquid_liquid
)) {{

 requirerequire((amount <amount <;== maxSellLimit maxSellLimit,, " ";You are exceeding maxSellLimit"You are exceeding maxSellLimit";));;

 ifif ((recipient recipient !=!= pair pair)) {{

 requirerequire((

 balanceOfbalanceOf((recipientrecipient)) ++ amount amount == coolDownTime coolDownTime,, "Cooldown enabled""Cooldown enabled"));;

 _lastSell _lastSell[[sendersender]] == block block..timestamptimestamp;;

 }}

}}

Recommendation
Add an if statement to check for wallet to wallet transfers.

ShoshinInu / Security Audit

Description

Max Sell limit also triggered when transferring from wallet to
wallet

Error Code

CSH-01

 High-Risk: Must be fixed, will bring problems.

Owner can bulk blacklist addresses

function function bulkIsBlacklistedbulkIsBlacklisted((addressaddress[[]] memory accounts memory accounts,, bool state bool state)) externalexternal onlyOwner onlyOwner {{

 forfor ((uint256 i uint256 i == 00;; i < i <; accounts accounts..lengthlength;; i i++++)) {{

 isBlacklisted isBlacklisted[[accountsaccounts[[ii]]]] == state state;;

 }}

}}

Recommendation
Using this, the owner can blacklist a lot of addresses in 1 time, potentially all presale buyers and
preventing them to trade.

ShoshinInu / Security Audit

Description

Owner can bulk blacklist addresses

Error Code

CSH-02

 High-Risk: Must be fixed, will bring problems.

Owner can set sell cooldown to infinity

function function updateCooldownupdateCooldown((bool statebool state,, uint256 time uint256 time)) externalexternal onlyOwner onlyOwner {{

 coolDownTime coolDownTime == time time ** 11 seconds seconds;;

 coolDownEnabled coolDownEnabled == state state;;

}}

Recommendation
Add a require statement to prevent setting the cooldown to arbitrary high amounts

ShoshinInu / Security Audit

Description

Owner can set sell cooldown to infinity

Error Code

CSH-03

 High-Risk: Must be fixed, will bring problems.

Launchtax is set to 99

uint256 uint256 privateprivate launchtax launchtax == 9999;;

elseelse ifif ((useLaunchFeeuseLaunchFee)) {{

 feeswap feeswap == launchtax launchtax;;

 feesum feesum == launchtax launchtax;;

 }}

Recommendation
When block.number < genesis_block + deadline, the contract will use launchtax, which is 99%. Be
careful when trading

ShoshinInu / Security Audit

Description

Launchtax is set to 99

Maximum Fee Limit Check

Error Code

CEN-01

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee

Transfer fee

Buy fee

Sell fee

Type of fee

Max transfer fee

Max buy fee

Max sell fee

Function

function function SetBuyTaxesSetBuyTaxes((

 uint256 _marketing uint256 _marketing,,

 uint256 _liquidity uint256 _liquidity,,

 uint256 _dev uint256 _dev

)) externalexternal onlyOwner onlyOwner {{

 requirerequire((((_marketing _marketing ++ _liquidity _liquidity ++ _dev _dev)) < <;== 33,, " ";Must keep fees at Must keep fees at 33%% oror less" less";));;

 taxes taxes == TaxesTaxes((_marketing_marketing,, _liquidity _liquidity,, _dev _dev));;

}}

function function SetSellTaxesSetSellTaxes((

 uint256 _marketing uint256 _marketing,,

 uint256 _liquidity uint256 _liquidity,,

 uint256 _dev uint256 _dev

)) externalexternal onlyOwner onlyOwner {{

 requirerequire((((_marketing _marketing ++ _liquidity _liquidity ++ _dev _dev)) < <;== 33,, " ";Must keep fees at Must keep fees at 33%% oror less" less";));;

ShoshinInu / Security Audit

Description

Centralization: Operator Fee Manipulation

Description

 Owner cannot set the transfer fee to 25% or higher

 Owner cannot set the buy fee to 25% or higher

 Owner cannot set the sell fee to 25% or higher

Description

3%

3%

3%

Contract Pausability Check

Error Code

CEN-02

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,
users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check

Can owner pause the contract?

ShoshinInu / Security Audit

Description

Centralization: Operator Pausability

Description

 Owner cannot pause the contract

Max Transaction Amount Check

Error Code

CEN-03

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to
take place if they abuse this function.

Privilege Check

Can owner set max tx amount?

ShoshinInu / Security Audit

Description

Centralization: Operator Transaction Manipulation

Description

 Owner cannot set max transaction amount

Exclude From Fees Check

Error Code

CEN-04

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this
function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check

Can owner exclude from fees?

Function

function function updateExemptFeeupdateExemptFee((address _addressaddress _address,, bool state bool state)) externalexternal onlyOwner onlyOwner {{

 exemptFee exemptFee[[_address_address]] == state state;;

}}

function function bulkExemptFeebulkExemptFee((addressaddress[[]] memory accounts memory accounts,, bool state bool state)) externalexternal onlyOwner onlyOwner {{

 forfor ((uint256 i uint256 i == 00;; i < i <; accounts accounts..lengthlength;; i i++++)) {{

 exemptFee exemptFee[[accountsaccounts[[ii]]]] == state state;;

 }}

}}

ShoshinInu / Security Audit

Description

Centralization: Operator Exclusion

Description

 Owner can exclude from fees

Ability To Mint Check

Error Code

CEN-05

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more
tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable
minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check

Can owner mint?

ShoshinInu / Security Audit

Description

Centralization: Operator Increase Supply

Description

 Owner cannot mint new tokens

Ability To Blacklist Check

Error Code

CEN-06

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not
allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting
with a smart contract.

Privilege Check

Can owner blacklist?

Function

function function updateIsBlacklistedupdateIsBlacklisted((address accountaddress account,, bool state bool state)) externalexternal onlyOwner onlyOwner {{

 isBlacklisted isBlacklisted[[accountaccount]] == state state;;

}}

function function bulkIsBlacklistedbulkIsBlacklisted((addressaddress[[]] memory accounts memory accounts,, bool state bool state)) externalexternal onlyOwner onlyOwner {{

 forfor ((uint256 i uint256 i == 00;; i < i <; accounts accounts..lengthlength;; i i++++)) {{

 isBlacklisted isBlacklisted[[accountsaccounts[[ii]]]] == state state;;

 }}

}}

ShoshinInu / Security Audit

Description

Centralization: Operator Dissalows Wallets

Description

 Owner can blacklist addresses

Other Owner Privileges Check

Error Code

CEN-100

Coinsult lists all important contract methods which the owner can interact with.

 Owner can use the deadline function before launch

 Owner can update cooldown period arbitrary long

 Owner can update max wallet holding balance

 Owner can update max transaction amount but not less than 0.1% of the total supply

ShoshinInu / Security Audit

Description

Centralization: Operator Priviliges

Notes
Notes by ShoshinInu

No notes provided by the team.

Notes by Coinsult

No notes provided by Coinsult

ShoshinInu / Security Audit

Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

contract ShoshinInu contract ShoshinInu isis ERC20 ERC20,, Ownable Ownable {{

using Address using Address forfor address payable address payable;;

IRouter IRouter publicpublic router router;;

address address publicpublic pair pair;;

bool bool privateprivate _liquidityMutex _liquidityMutex == falsefalse;;

bool bool publicpublic providingLiquidity providingLiquidity == falsefalse;;

bool bool publicpublic tradingEnabled tradingEnabled == falsefalse;;

ShoshinInu / Security Audit

Website Review
Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry.

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

ShoshinInu / Security Audit

Description

 The website is mobile friendly

 The website does not contain jQuery errors

 The website is SSL secured

 The website does not contain spelling errors

Certificate of Proof
 Not KYC verified by Coinsult

ShoshinInu
Audited by Coinsult.net

Date: 26 October 2022
 Advanced Manual Smart Contract Audit

ShoshinInu / Security Audit

Coinsult

End of report

Smart Contract Audit
 CoinsultAudits

 info@coinsult.net

 coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

