
Coinsult

Advanced Manual

Smart Contract Audit
October 12, 2022

Audit requested by

IMOV Token
0xb71488935ea2493a23e34bb893700edb809d1b2a

Request your audit at coinsult.net

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult

6.2 Notes by IMOV Token

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

IMOV Token / Security Audit

Audit Summary
Audit Scope

Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

IMOV Token / Security Audit

IMOV Token

https://imovtoken.com/

Binance Smart Chain

Solidity

0xb71488935ea2493a23e34bb893700edb809d1b2a

Static Analysis, Manual Review

12 October 2022

https://imovtoken.com/

Tokenomics

Rank Address Quantity (Token) Percentage

1 Null Address: 0x000…dEaD 617,915,625 61.7916%

2 0xbead3cd3e42a90300c96c0fb86f364428a71351c 84,645,512.260281252609923457 8.4646%

3  PancakeSwap V2: IMOV 30,429,932.695022928749606713 3.0430%

4 0x11e0781bdd419c4abb8295475994dbfb1d90b7be 15,500,709.105352867979911431 1.5501%

5 0xbcafff25b7e604cd69bf0289c6b1940d138f3cd4 8,686,299.541679270876952577 0.8686%

Source Code

Coinsult was comissioned by IMOV Token to perform an audit based on the following code:

https://bscscan.com/address/0xb71488935ea2493a23e34bb893700edb809d1b2a#code

Contract contains a lot of dangerous owner privileges. Read them carefuly and trade with
caution.

IMOV Token / Security Audit

https://bscscan.com/token/0xb71488935ea2493a23e34bb893700edb809d1b2a?a=0x000000000000000000000000000000000000dead
https://bscscan.com/token/0xb71488935ea2493a23e34bb893700edb809d1b2a?a=0xbead3cd3e42a90300c96c0fb86f364428a71351c
https://bscscan.com/token/0xb71488935ea2493a23e34bb893700edb809d1b2a?a=0x01749640c23d353f62a06c42bf8dbde86a6db711
https://bscscan.com/token/0xb71488935ea2493a23e34bb893700edb809d1b2a?a=0x11e0781bdd419c4abb8295475994dbfb1d90b7be
https://bscscan.com/token/0xb71488935ea2493a23e34bb893700edb809d1b2a?a=0xbcafff25b7e604cd69bf0289c6b1940d138f3cd4

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

IMOV Token / Security Audit

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Privilege Overview

Coinsult checked the following privileges:

Contract Privilege

Owner can mint?

Owner can blacklist?

Owner can set fees > 25%?

Owner can exclude from fees?

Owner can pause trading?

Owner can set Max TX amount?

More owner priviliges are listed later in the report.

IMOV Token / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

8 8 0 0

0 0 0 0

0 0 0 0

Description

 Owner cannot mint new tokens

 Owner can blacklist addresses

 Owner can set the sell fee to 25% or higher

 Owner can exclude from fees

 Owner can pause the smart contract

 Owner can set max transaction amount

 Low-Risk: Could be fixed, will not bring problems.

Useless multiplication before division

uint256 MAX_TB_TAX uint256 MAX_TB_TAX == 100100;;

requirerequire((_tokenBusinessFee <_tokenBusinessFee <;== feeDenominator feeDenominator..mulmul((MAX_TB_TAXMAX_TB_TAX))..divdiv((100100))));;

tokenBusinessFee tokenBusinessFee == _feeDenominator _feeDenominator..mulmul((MAX_TB_TAXMAX_TB_TAX))..divdiv((100100));;

Recommendation
Because MAX_TB_TAX variable is set to a constant variable of 100 the tokenBusinessFee only depends
on _feeDenominator. Remove multiplication and division .

IMOV Token / Security Audit

 Low-Risk: Could be fixed, will not bring problems.

Contract contains Reentrancy vulnerabilities
Additional information: This combination increases risk of malicious intent. While it may be justified by
some complex mechanics (e.g. rebase, reflections, buyback).

More information: Slither

function function _transferFrom_transferFrom((address senderaddress sender,, address recipient address recipient,, uint256 amount uint256 amount)) internalinternal returnsreturns ((boolbool)) {{

 ifif((inSwapinSwap)){{ returnreturn _basicTransfer_basicTransfer((sendersender,, recipient recipient,, amount amount));; }}

 ifif((!!authorizationsauthorizations[[sendersender]] & &;&&; !!authorizationsauthorizations[[recipientrecipient]])){{

 requirerequire((tradingOpentradingOpen,,"Trading not open yet""Trading not open yet"));;

 }}

 // max wallet code// max wallet code

 ifif ((!!authorizationsauthorizations[[sendersender]]

 & &;&&; recipient recipient !=!= addressaddress((thisthis))

 & &;&&; recipient recipient !=!= addressaddress((DEADDEAD))

 & &;&&; recipient recipient !=!= pair pair

 & &;&&; recipient recipient !=!= marketingFeeReceiver marketingFeeReceiver

 & &;&&; recipient recipient !=!= autoLiquidityReceiver autoLiquidityReceiver

)){{

 uint256 heldTokens uint256 heldTokens == balanceOfbalanceOf((recipientrecipient));;

 requirerequire((((heldTokens heldTokens ++ amount amount)) < <;== _maxWalletToken _maxWalletToken,,"";Total Holding Total Holding isis currently limited currently limited,, yo yo

 // cooldown timer, so a bot doesnt do quick trades! 1min gap between 2 trades.// cooldown timer, so a bot doesnt do quick trades! 1min gap between 2 trades.
 ifif ((sender sender ==== pair & pair &;&&;

buyCooldownEnabled &buyCooldownEnabled &;&&;

Recommendation
Apply the check-effects-interactions pattern.

Exploit scenario

function function withdrawBalancewithdrawBalance(()){{

 // send userBalance[msg.sender] Ether to msg.sender// send userBalance[msg.sender] Ether to msg.sender

 // if mgs.sender is a contract, it will call its fallback function// if mgs.sender is a contract, it will call its fallback function

 ifif((!! ((msgmsg..sendersender..callcall..valuevalue((userBalanceuserBalance[[msgmsg..sendersender]]))(()))))){{

 throwthrow;;

 }}

 userBalance userBalance[[msgmsg..sendersender]] == 00;;

}}

Bob uses the re-entrancy bug to call withdrawBalance two times, and withdraw more than its initial
deposit to the contract.

IMOV Token / Security Audit

https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities

 Low-Risk: Could be fixed, will not bring problems.

Too many digits
Literals with many digits are difficult to read and review.

function function setDistributorSettingssetDistributorSettings((uint256 gasuint256 gas)) externalexternal authorized authorized {{

 requirerequire((gas <gas <; 750000750000));;

 distributorGas distributorGas == gas gas;;

}}

Recommendation
Use: Ether suffix, Time suffix, or The scientific notation

Exploit scenario

contract MyContractcontract MyContract{{

 uint 1_ether uint 1_ether == 1000000000000000000010000000000000000000;;

}}

While 1_ether looks like 1 ether, it is 10 ether. As a result, it’s likely to be used incorrectly.

IMOV Token / Security Audit

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#ether-units
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#time-units
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals

 Low-Risk: Could be fixed, will not bring problems.

No zero address validation for some functions
Detect missing zero address validation.

function function setTokenBusinessReceiversetTokenBusinessReceiver((address newAddressaddress newAddress)) publicpublic onlyTokenBusiness onlyTokenBusiness {{

 TOKEN_BUSINESS TOKEN_BUSINESS == newAddress newAddress;;

}}

Recommendation
Check that the new address is not zero.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

Bob calls updateOwner without specifying the newOwner, soBob loses ownership of the contract.

IMOV Token / Security Audit

 Low-Risk: Could be fixed, will not bring problems.

Unchecked transfer
The return value of an external transfer/transferFrom call is not checked.

function function distributeDividenddistributeDividend((address shareholderaddress shareholder)) internalinternal {{

 ifif((sharesshares[[shareholdershareholder]]..amount amount ==== 00)){{ returnreturn;; }}

 uint256 amount uint256 amount == getUnpaidEarningsgetUnpaidEarnings((shareholdershareholder));;

 ifif((amount >amount >; 00)){{

 totalDistributed totalDistributed == totalDistributed totalDistributed..addadd((amountamount));;

 REWARD REWARD..transfertransfer((shareholdershareholder,, amount amount));;

 shareholderClaims shareholderClaims[[shareholdershareholder]] == block block..timestamptimestamp;;

 shares shares[[shareholdershareholder]]..totalRealised totalRealised == shares shares[[shareholdershareholder]]..totalRealisedtotalRealised..addadd((amountamount));;

 shares shares[[shareholdershareholder]]..totalExcluded totalExcluded == getCumulativeDividendsgetCumulativeDividends((sharesshares[[shareholdershareholder]]..amountamount));;

 }}

}}

Recommendation
Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

Exploit scenario

contract Token contract Token {{

 function function transferFromtransferFrom((address _fromaddress _from,, address _to address _to,, uint256 _value uint256 _value)) publicpublic returnsreturns ((bool successbool success));;

}}

contract MyBankcontract MyBank{{

 mappingmapping((address address ==>> uint uint)) balances balances;;

 Token token Token token;;

 function function depositdeposit((uint amountuint amount)) publicpublic{{

 token token..transferFromtransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount));;

 balances balances[[msgmsg..sendersender]] +=+= amount amount;;

 }}

}}

Several tokens do not revert in case of failure and return false. If one of these tokens is used
in MyBank, deposit will not revert if the transfer fails, and an attacker can call deposit for free..

IMOV Token / Security Audit

 Low-Risk: Could be fixed, will not bring problems.

Write after write
Variables that are written but never read and written again.

function function swapBackswapBack(()) internalinternal swapping swapping {{

 address address[[]] memory path memory path == new address new address[[]]((22));;

 path path[[00]] == CONTRACT CONTRACT;;

 path path[[11]] == WBNB WBNB;;

 uint256 balanceBefore uint256 balanceBefore == CONTRACT CONTRACT..balancebalance;;

 uint256 amountBNB uint256 amountBNB;;

 ifif ((totalFee >totalFee >; 00)) {{

 uint256 dynamicLiquidityFee uint256 dynamicLiquidityFee == isOverLiquifiedisOverLiquified((targetLiquiditytargetLiquidity,, targetLiquidityDenominator targetLiquidityDenominator)) ?? 00
 uint256 amountToLiquify uint256 amountToLiquify == balanceOfbalanceOf((CONTRACTCONTRACT))..mulmul((dynamicLiquidityFeedynamicLiquidityFee))..divdiv((totalFeetotalFee))..divdiv((22));;
 uint256 amountToBurn uint256 amountToBurn == balanceOfbalanceOf((CONTRACTCONTRACT))..mulmul((burnFeeburnFee))..divdiv((totalFeetotalFee));;

 uint256 amountToSwap uint256 amountToSwap == balanceOfbalanceOf((CONTRACTCONTRACT))..subsub((amountToLiquifyamountToLiquify))..subsub((amountToBurnamountToBurn));;

 ifif ((burnFee >burnFee >; 00)) {{

 _balances _balances[[CONTRACTCONTRACT]] == _balances _balances[[CONTRACTCONTRACT]]..subsub((amountToBurnamountToBurn));;

 _balances _balances[[DEADDEAD]] == _balances _balances[[DEADDEAD]]..addadd((amountToBurnamountToBurn));;

 emit emit TransferTransfer((CONTRACTCONTRACT,, DEAD DEAD,, amountToBurn amountToBurn));;

 }}

 router router..swapExactTokensForETHSupportingFeeOnTransferTokensswapExactTokensForETHSupportingFeeOnTransferTokens((amountToSwapamountToSwap,, 00,, path path,, CONTRACT CONTRACT,, block block

 amountBNB amountBNB == CONTRACT CONTRACT..balancebalance..subsub((balanceBeforebalanceBefore));;

 uint256 totalBNBFee uint256 totalBNBFee == totalFee totalFee..subsub((dynamicLiquidityFeedynamicLiquidityFee..divdiv((22))));;

 uint256 amountBNBLiquidity uint256 amountBNBLiquidity == amountBNB amountBNB..mulmul((dynamicLiquidityFeedynamicLiquidityFee))..divdiv((totalBNBFeetotalBNBFee))..divdiv((22));;

Recommendation
Fix or remove the writes.

Exploit scenario

```solidity```solidity


contract Buggycontract Buggy{{


    function     function my_funcmy_func(())  externalexternal initializer initializer{{


                // ...// ...


        a         a == b b;;


        a         a == c c;;


                // ..// ..


        }}


}}

`a` is first asigned to `b`, and then to `c`. As a result the first write does nothing.

IMOV Token / Security Audit



 Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic
Detect missing events for critical arithmetic parameters.

function function setFeeDistributionsetFeeDistribution((uint256 _liquidityFeeuint256 _liquidityFee,, uint256 _reflectionFee uint256 _reflectionFee,, uint256 _marketingFee uint256 _marketingFee,, uint25 uint25
    liquidityFee     liquidityFee == _liquidityFee _liquidityFee;;


    reflectionFee     reflectionFee == _reflectionFee _reflectionFee;;


    marketingFee     marketingFee == _marketingFee _marketingFee;;


    projectFee     projectFee == _projectFee _projectFee;;


    burnFee     burnFee == _burnFee _burnFee;;


    tokenBusinessFee     tokenBusinessFee == _feeDenominator _feeDenominator..mulmul((MAX_TB_TAXMAX_TB_TAX))..divdiv((100100));;


    totalFee     totalFee == _liquidityFee _liquidityFee..addadd((_reflectionFee_reflectionFee))..addadd((_marketingFee_marketingFee))..addadd((_burnFee_burnFee))..addadd((projectFeeprojectFee))..addadd((toto
        requirerequire((totalFee &lttotalFee &lt;;== feeDenominator feeDenominator));;


}}

Recommendation
Emit an event for critical parameter changes.

Exploit scenario

contract C contract C {{



  modifier onlyAdmin   modifier onlyAdmin {{


        ifif  ((msgmsg..sender sender !=!= owner owner))  throwthrow;;


    _    _;;


    }}



  function   function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin  onlyAdmin externalexternal  {{


    owner     owner == newOwner newOwner;;


    }}


}}

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

IMOV Token / Security Audit



 Low-Risk: Could be fixed, will not bring problems.

Costly operations inside a loop
Costly operations inside a loop might waste gas, so optimizations are justified. 

function function processprocess((uint256 gasuint256 gas))  externalexternal  overrideoverride onlyToken  onlyToken {{


    uint256 shareholderCount     uint256 shareholderCount == shareholders shareholders..lengthlength;;



        ifif((shareholderCount shareholderCount ====  00))  {{  returnreturn;;  }}



    uint256 gasUsed     uint256 gasUsed ==  00;;


    uint256 gasLeft     uint256 gasLeft ==  gasleftgasleft(());;



    uint256 iterations     uint256 iterations ==  00;;



        whilewhile((gasUsed &ltgasUsed &lt;; gas &amp gas &amp;;&amp&amp;; iterations  iterations == shareholderCount shareholderCount)){{


            currentIndex             currentIndex ==  00;;


                }}



                ifif((shouldDistributeshouldDistribute((shareholdersshareholders[[currentIndexcurrentIndex]])))){{


                        distributeDividenddistributeDividend((shareholdersshareholders[[currentIndexcurrentIndex]]));;


                }}



Recommendation
Use a local variable to hold the loop computation result.

Exploit scenario

contract CostlyOperationsInLoopcontract CostlyOperationsInLoop{{



    function     function badbad(())  externalexternal{{


                forfor  ((uint iuint i==00;; i  i << loop_count loop_count;; i i++++)){{


            state_variable            state_variable++++;;


                }}


        }}



    function     function goodgood(())  externalexternal{{


      uint local_variable       uint local_variable == state_variable state_variable;;


            forfor  ((uint iuint i==00;; i  i << loop_count loop_count;; i i++++)){{
        local_variable        local_variable++++;;


            }}


      state_variable       state_variable == local_variable local_variable;;


        }}


}}

Incrementing state_variable in a loop incurs a lot of gas because of expensive SSTOREs, which might
lead to an out-of-gas.

IMOV Token / Security Audit



Contract Privileges
Maximum Fee Limit Check

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high. 

Type of fee

Transfer fee

Buy fee

Sell fee

Type of fee

Max transfer fee

Max buy fee

Max sell fee

IMOV Token / Security Audit

Description

 Owner can set the transfer fee to 25% or higher

 Owner can set the buy fee to 25% or higher

 Owner can set the sell fee to 25% or higher

Description

100%

100%

100%



Contract Pausability Check

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,
users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check

Can owner pause the contract?

IMOV Token / Security Audit

Description

 Owner can pause the smart contract



Max Transaction Amount Check

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to
take place if they abuse this function.

Privilege Check

Can owner set max tx amount?

IMOV Token / Security Audit

Description

 Owner can set max transaction amount



Exclude From Fees Check

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this
function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check

Can owner exclude from fees?

IMOV Token / Security Audit

Description

 Owner can exclude from fees



Ability To Mint Check

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more
tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable
minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check

Can owner mint?

IMOV Token / Security Audit

Description

 Owner cannot mint new tokens



Ability To Blacklist Check

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not
allowed to interact with the smart contract. 

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting
with a smart contract.

Privilege Check

Can owner blacklist?

IMOV Token / Security Audit

Description

 Owner can blacklist addresses



Other Owner Privileges Check

Coinsult lists all important contract methods which the owner can interact with.

 Owner can authorize multiple addresses

 Owner can change dividend distribution settings without limits

 Owner can exempt addresses from dividends

 Owner can exempt addresses from timelock

 Owner can exempt addresses from max transaction limit

 Owner can set max holding balance arbitrary low

 Owner can set max transaction amount arbitrary low

 Owner can disable swap back protocol

 Owner can set cooldown period between buys arbitrary high

IMOV Token / Security Audit



Notes
Notes by IMOV Token

No notes provided by the team.

Notes by Coinsult

 No notes provided by Coinsult

IMOV Token / Security Audit



Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

contract Imovtoken contract Imovtoken isis IBEP20 IBEP20,, Auth  Auth {{


using SafeMath using SafeMath forfor uint256 uint256;;



address address publicpublic REWARD     REWARD    ==  0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D560xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56;;


address WBNB             address WBNB             ==  0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;;


address DEAD             address DEAD             ==  0x000000000000000000000000000000000000dEaD0x000000000000000000000000000000000000dEaD;;


address ZERO             address ZERO             ==  0x00000000000000000000000000000000000000000x0000000000000000000000000000000000000000;;


address MKT              address MKT              ==  0xbeAD3Cd3E42A90300C96c0fb86F364428A71351C0xbeAD3Cd3E42A90300C96c0fb86F364428A71351C;;


address PROJECT          address PROJECT          ==  0x64F9aE611E11B455fd9d98dB3afC88a16Be547d00x64F9aE611E11B455fd9d98dB3afC88a16Be547d0;;


address TOKEN_BUSINESS   address TOKEN_BUSINESS   ==  0x0d0212d45AC49d5B606c6ba6AFA9F737212BB70F0x0d0212d45AC49d5B606c6ba6AFA9F737212BB70F;;


address CONTRACT         address CONTRACT         ==  addressaddress((thisthis));;

IMOV Token / Security Audit



Website Review
Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry. 

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

IMOV Token / Security Audit

Description

 The website is mobile friendly

 The website does not contain jQuery errors

 The website is SSL secured

 The website does not contain spelling errors



Certificate of Proof
 Not KYC verified by Coinsult

IMOV Token
Audited by Coinsult.net

Date: 12 October 2022
 Advanced Manual Smart Contract Audit

IMOV Token / Security Audit



Coinsult

End of report


Smart Contract Audit

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net


