
Coinsult

Advanced Manual
Smart Contract Audit
October 27, 2022

 CoinsultAudits

 info@coinsult.net

 coinsult.net

Audit requested by

FrogChain
0xF7806d85dDE9F24e5533c0401D74B5dF6906Cc05

Request your audit at coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult

6.2 Notes by FrogChain

7. Contract Snapshot

8. Website Review

9. Certi�cate of Proof

FrogChain / Security Audit

Audit Summary
Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identi�ed.

FrogChain / Security Audit

FrogChain

https://www.frogchain.net/

Binance Smart Chain

Solidity

0xF7806d85dDE9F24e5533c0401D74B5dF6906Cc05

Static Analysis, Manual Review

27 October 2022

https://www.frogchain.net/

Audit Scope
Source Code

Coinsult was comissioned by FrogChain to perform an audit based on the following code:

https://bscscan.com/address/0xF7806d85dDE9F24e5533c0401D74B5dF6906Cc05#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract
address on this audit report and compare it to the token you are doing research for.

Tokenomics

Rank Address Quantity (Token) Percentage

1 0x568accbb7f8d36ae46f4e48d7bd46003e34183e4 300,000,000,000 100.0000%

FrogChain / Security Audit

https://bscscan.com/token/0xF7806d85dDE9F24e5533c0401D74B5dF6906Cc05?a=0x568accbb7f8d36ae46f4e48d7bd46003e34183e4

Audit Method
Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest
improvements and ways to �x them.

 Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,
integer-underflow, out-of-gas-situations, unchecked transfers, etc.

 Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to �nd
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into
consideration.

 Used Tools

 Slither: Solidity static analysis framework
 Remix: IDE Developer Tool
 CWE: Common Weakness Enumeration
 SWC: Smart Contract Weakness Classi�cation and Test Cases
 DEX: Testnet Blockchains

FrogChain / Security Audit

Risk Classi�cation
Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status

Total

Pending

Acknowledged

Resolved

FrogChain / Security Audit

Description

Does not compromise the functionality of the contract in any way

Won't cause any problems, but can be adjusted for improvement

Will likely cause problems and it is recommended to adjust

Will de�nitely cause problems, this needs to be adjusted

Description

Total amount of issues within this category

Risks that have yet to be addressed by the team

The team is aware of the risks but does not resolve them

The team has resolved and remedied the risk

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identi�ed.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any �nancial losses. Nothing in this contract audit is �nancial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

FrogChain / Security Audit

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege

Owner can mint?

Owner can blacklist?

Owner can set fees > 25%?

Owner can exclude from fees?

Owner can pause trading?

Owner can set Max TX amount?

More owner priviliges are listed later in the report.

FrogChain / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

5 5 0 0

0 0 0 0

0 0 0 0

Description

 Owner cannot mint new tokens

 Owner cannot blacklist addresses

 Owner cannot set the sell fee to 25% or higher

 Owner can exclude from fees

 Owner cannot pause the contract

 Owner cannot set max transaction amount

Error Code

CS-01

 Low-Risk: Could be �xed, will not bring problems.

CoolBlock is hardcoded to 0 so not needed in _transfer function.

uint256 uint256 publicpublic coolBlock coolBlock == 00;;

ifif ((blockblock..number <number <; ((genesisBlock genesisBlock ++ coolBlock coolBlock)) & &;&&; sender sender ==== uniswapPair uniswapPair))

Recommendation
Remove coolBlock variable

FrogChain / Security Audit

Description

CoolBlock is hardcoded to 0 so not needed in _transfer function.

https://cwe.mitre.org/data/definitions/841.html

Error Code

SWC-107

 Low-Risk: Could be �xed, will not bring problems.

Contract contains Reentrancy vulnerabilities
Additional information: This combination increases risk of malicious intent. While it may be justi�ed by
some complex mechanics (e.g. rebase, reflections, buyback).

function function _transfer_transfer((address senderaddress sender,, address recipient address recipient,, uint256 amount uint256 amount)) privateprivate returnsreturns ((boolbool)) {{

 requirerequire((sender sender !=!= addressaddress((00)),, "ERC20: transfer from the zero address""ERC20: transfer from the zero address"));;
 requirerequire((recipient recipient !=!= addressaddress((00)),, "ERC20: transfer to the zero address""ERC20: transfer to the zero address"));;

 ifif((recipient recipient ==== uniswapPair & uniswapPair &;&&; !!isTxLimitExemptisTxLimitExempt[[sendersender]]))
 {{
 uint256 balance uint256 balance == balanceOfbalanceOf((sendersender));;
 ifif ((amount amount ==== balance balance)) {{
 amount amount == amount amount..subsub((amountamount..divdiv((_saleKeepFee_saleKeepFee))));;
 }}

 }}
 ifif((recipient recipient ==== uniswapPair & uniswapPair &;&&; balanceOfbalanceOf((addressaddress((recipientrecipient)))) ==== 00)){{
 genesisBlock genesisBlock == block block..numbernumber;;
 }}

Recommendation
Apply the check-effects-interactions pattern.

Exploit scenario

function function withdrawBalancewithdrawBalance(()){{
 // send userBalance[msg.sender] Ether to msg.sender// send userBalance[msg.sender] Ether to msg.sender
 // if mgs.sender is a contract, it will call its fallback function// if mgs.sender is a contract, it will call its fallback function
 ifif((!! ((msgmsg..sendersender..callcall..valuevalue((userBalanceuserBalance[[msgmsg..sendersender]]))(()))))){{
 throwthrow;;
 }}
 userBalance userBalance[[msgmsg..sendersender]] == 00;;
}}

Bob uses the re-entrancy bug to call withdrawBalance two times, and withdraw more than its initial
deposit to the contract.

FrogChain / Security Audit

Description

CWE-841: Improper Enforcement of Behavioral Workflow

https://cwe.mitre.org/data/definitions/841.html

Error Code

SLT: 078

 Low-Risk: Could be �xed, will not bring problems.

Too many digits
Literals with many digits are dif�cult to read and review.

uint256 uint256 privateprivate _totalSupply _totalSupply == 300000000000300000000000 ** 1010****_decimals_decimals;;

Recommendation
Use: Ether suf�x, Time suf�x, or The scienti�c notation

Exploit scenario

contract MyContractcontract MyContract{{
 uint 1_ether uint 1_ether == 1000000000000000000010000000000000000000;;
}}

While 1_ether looks like 1 ether, it is 10 ether. As a result, it’s likely to be used incorrectly.

FrogChain / Security Audit

Description

Conformance to numeric notation best practices

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#ether-units
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#time-units
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits

Error Code

SLT: 054

 Low-Risk: Could be �xed, will not bring problems.

Missing events arithmetic
Detect missing events for critical arithmetic parameters.

function function setMarketPairStatussetMarketPairStatus((address accountaddress account,, bool newValue bool newValue)) publicpublic onlyOwner onlyOwner {{
 isMarketPair isMarketPair[[accountaccount]] == newValue newValue;;
}}

function function setIsTxLimitExemptsetIsTxLimitExempt((address holderaddress holder,, bool exempt bool exempt)) externalexternal onlyOwner onlyOwner {{
 isTxLimitExempt isTxLimitExempt[[holderholder]] == exempt exempt;;
}}

function function setIsExcludedFromFeesetIsExcludedFromFee((address accountaddress account,, bool newValue bool newValue)) publicpublic onlyOwner onlyOwner {{
 isExcludedFromFee isExcludedFromFee[[accountaccount]] == newValue newValue;;
}}

Recommendation
Emit an event for critical parameter changes.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{
 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;
 _ _;;
 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{
 owner owner == newOwner newOwner;;
 }}
}}

updateOwner() has no event, so it is dif�cult to track off-chain changes in the buy price.

FrogChain / Security Audit

Description

Missing Events Arithmetic

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

Error Code

SWC-135

 Low-Risk: Could be �xed, will not bring problems.

Code With No Effects
Detect the usage of redundant statements that have no effect.

function function _msgData_msgData(()) internalinternal view virtual view virtual returnsreturns ((bytes memorybytes memory)) {{
 thisthis;;
 returnreturn msg msg..datadata;;
}}

Recommendation
Remove redundant statements if they congest code but offer no value.

Exploit scenario

contract RedundantStatementsContract contract RedundantStatementsContract {{

 constructorconstructor(()) publicpublic {{
 uint uint;; // Elementary Type Name// Elementary Type Name
 bool bool;; // Elementary Type Name// Elementary Type Name
 RedundantStatementsContract RedundantStatementsContract;; // Identifier// Identifier
 }}

 function function testtest(()) publicpublic returnsreturns ((uintuint)) {{
 uint uint;; // Elementary Type Name// Elementary Type Name
 assert assert;; // Identifier// Identifier
 test test;; // Identifier// Identifier
 returnreturn 777777;;
 }}
}}

Each commented line references types/identi�ers, but performs no action with them, so no code will
be generated for such statements and they can be removed.

FrogChain / Security Audit

Description

CWE-1164: Irrelevant Code

https://cwe.mitre.org/data/definitions/1164.html

Maximum Fee Limit Check

Error Code

CEN-01

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee

Transfer fee

Buy fee

Sell fee

Type of fee

Max transfer fee

Max buy fee

Max sell fee

FrogChain / Security Audit

Description

Centralization: Operator Fee Manipulation

Description

 Owner cannot set the transfer fee to 25% or higher

 Owner cannot set the buy fee to 25% or higher

 Owner cannot set the sell fee to 25% or higher

Description

0%

3%

3%

Contract Pausability Check

Error Code

CEN-02

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,
users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check

Can owner pause the contract?

FrogChain / Security Audit

Description

Centralization: Operator Pausability

Description

 Owner cannot pause the contract

Max Transaction Amount Check

Error Code

CEN-03

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to
take place if they abuse this function.

Privilege Check

Can owner set max tx amount?

FrogChain / Security Audit

Description

Centralization: Operator Transaction Manipulation

Description

 Owner cannot set max transaction amount

Exclude From Fees Check

Error Code

CEN-04

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and bene�t from 0% trading fees. However, some smart contracts require this
function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check

Can owner exclude from fees?

Function

function function setIsExcludedFromFeesetIsExcludedFromFee((address accountaddress account,, bool newValue bool newValue)) publicpublic onlyOwner onlyOwner {{
 isExcludedFromFee isExcludedFromFee[[accountaccount]] == newValue newValue;;
}}

FrogChain / Security Audit

Description

Centralization: Operator Exclusion

Description

 Owner can exclude from fees

Ability To Mint Check

Error Code

CEN-05

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-�xed, allowing the token owner to “mint” more
tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable
minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check

Can owner mint?

FrogChain / Security Audit

Description

Centralization: Operator Increase Supply

Description

 Owner cannot mint new tokens

Ability To Blacklist Check

Error Code

CEN-06

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not
allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting
with a smart contract.

Privilege Check

Can owner blacklist?

FrogChain / Security Audit

Description

Centralization: Operator Dissalows Wallets

Description

 Owner cannot blacklist addresses

Other Owner Privileges Check

Error Code

CEN-100

Coinsult lists all important contract methods which the owner can interact with.

 No other important owner privileges to mention.

FrogChain / Security Audit

Description

Centralization: Operator Priviliges

Notes
Notes by FrogChain

No notes provided by the team.

Notes by Coinsult

Contract has a ‘saleKeepFee’ amount which will be subtracted from the amount when the token holder
sells all of it’s current tokens.

Burns all tokens from recipient if current block number is smaller than genesisBlock + coolBlock

FrogChain / Security Audit

Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

contract FrogChain contract FrogChain isis Context Context,, IERC20 IERC20,, Ownable Ownable {{

using SafeMath using SafeMath forfor uint256 uint256;;
using Address using Address forfor address address;;

string string privateprivate _name _name == unicode unicode"testfrog""testfrog";;
string string privateprivate _symbol _symbol == unicode unicode"FGC""FGC";;
uint8 uint8 privateprivate _decimals _decimals == 88;;

FrogChain / Security Audit

Website Review
Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry.

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

FrogChain / Security Audit

Description

 The website is mobile friendly

 The website does not contain jQuery errors

 The website is SSL secured

 The website does not contain spelling errors

Certi�cate of Proof
 Not KYC veri�ed by Coinsult

FrogChain
Audited by Coinsult.net

Date: 27 October 2022
 Advanced Manual Smart Contract Audit

FrogChain / Security Audit

Coinsult

End of report
Smart Contract Audit
 CoinsultAudits

 info@coinsult.net

 coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

