@ COi nsu lt Request your audit at coinsult.net

Advanced Manual
Smart Contract Audit

October 27, 2022

CoinsultAudits
iInfo@coinsult.net

coinsult.net

Audit requested by

9 FrogChain

OxF7806d85dDE9F24e5533c0401D74B5dF6906Cc05

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

S Coinsult FrogChain / Security Audit

Table of Contents

1. Audit Summary
1.1 Audit scope
1.2 Tokenomics
1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues
3.2 Low-risk issues
3.3 Medium-risk issues

3.4 High-risk issues
4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check
5.2 Contract Pausability Check
5.3 Max Transaction Amount Check
5.4 Exclude From Fees Check
5.5 Ability to Mint Check
5.6 Ability to Blacklist Check
5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult
6.2 Notes by FrogChain

7. Contract Snapshot
8. Website Review

9. Certificate of Proof

@ Coinsult

Audit Summary

Project Name

Website

Blockchain

Smart Contract Language
Contract Address

Audit Method

Date of Audit

FrogChain / Security Audit

FrogChain

https://www.frogchain.net/

Binance Smart Chain

Solidity

OxF7806d85dDE9F24e5533c0401D74B5dF6906Cc05

Static Analysis, Manual Review

27 October 2022

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the

results of the static analysis and the manual code review will be presented. The purpose of the audit is

to see if the functions work as intended, and to identify potential security issues within the smart

contract.

The information in this report should be used to understand the risks associated with the smart

contract. This report can be used as a guide for the development team on how the contract could

possibly be improved by remediating the issues that were identified.

https://www.frogchain.net/

g Coinsult FrogChain / Security Audit

Audit Scope

Source Code

Coinsult was comissioned by FrogChain to perform an audit based on the following code:
https://bscscan.com/address/0xF7806d85dDE9F24e5533c0401D74B5dF6906Cc05#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract

address on this audit report and compare it to the token you are doing research for.

Tokenomics

Rank Address Quantity (Token) Percentage

1 0x568acchb7f8d36aed6f4e48d7bd46003e34183e4 300,000,000,000 100.0000%

https://bscscan.com/token/0xF7806d85dDE9F24e5533c0401D74B5dF6906Cc05?a=0x568accbb7f8d36ae46f4e48d7bd46003e34183e4

' Coinsult FrogChain / Security Audit

Audit Method

Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest

improvements and ways to fix them.

(® Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,
integer-underflow, out-of-gas-situations, unchecked transfers, etc.

(® Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into

consideration.

® Used Tools

- Slither: Solidity static analysis framework

- Remix: IDE Developer Tool

- CWE: Common Weakness Enumeration

- SWC: Smart Contract Weakness Classification and Test Cases
- DEX: Testnet Blockchains

S Coinsult FrogChain / Security Audit

Risk Classification

Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level Description

@® Informational Does not compromise the functionality of the contract in any way

® Low-Risk Won't cause any problems, but can be adjusted for improvement

@ Medium-Risk Will likely cause problems and it is recommended to adjust
High-Risk Will definitely cause problems, this needs to be adjusted

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status Description

Total Total amount of issues within this category

Pending Risks that have yet to be addressed by the team
Acknowledged The team is aware of the risks but does not resolve them

Resolved The team has resolved and remedied the risk

' Coinsult FrogChain / Security Audit

Disclaimer

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a

detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered

investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

© Coinsult FrogChain / Security Audit

Global Overview

Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level Total Pending Acknowledged Resolved

@® Informational 0 0 0 0

® Low-Risk 5 5 0 0

@ Medium-Risk 0 0 0 0
High-Risk 0 0 0 0

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege Description

Owner can mint? @ Owner cannot mint new tokens

Owner can blacklist? @ Owner cannot blacklist addresses

Owner can set fees > 25%7? @ Owner cannot set the sell fee to 25% or higher
Owner can exclude from fees? @® Owner can exclude from fees

Owner can pause trading? @ Owner cannot pause the contract

Owner can set Max TX amount? @ Owner cannot set max transaction amount

More owner priviliges are listed later in the report.

© Coinsult FrogChain / Security Audit

Error Code Description

CS-01 CoolBlock is hardcoded to 0 so not needed in _transfer function.
@ Low-Risk: Could be fixed, will not bring problems.
CoolBlock is hardcoded to 0 so not needed in _transfer function.

uint256 public coolBlock = 9;

if (block.number &1t; (genesisBlock + coolBlock) && sender == uniswapPair)

Recommendation

Remove coolBlock variable

https://cwe.mitre.org/data/definitions/841.html

S Coinsult FrogChain / Security Audit

Error Code Description

SWC-107 CWE-841: Improper Enforcement of Behavioral Workflow

@ Low-Risk: Could be fixed, will not bring problems.

Contract contains Reentrancy vulnerabilities
Additional information: This combination increases risk of malicious intent. While it may be justified by
some complex mechanics (e.g. rebase, reflections, buyback).

function _transfer(address sender, address recipient, uint256 amount) private returns (bool) {

require(sender != address(©), "ERC20: transfer from the zero address");
require(recipient != address(©), "ERC20: transfer to the zero address");
if(recipient == uniswapPair && !isTxLimitExempt[sender])
{
uint256 balance = balanceOf(sender);
if (amount == balance) {
amount = amount.sub(amount.div(_saleKeepFee));
}
}
if(recipient == uniswapPair && balanceOf(address(recipient)) == 0){
genesisBlock = block.number;
}
Recommendation

Apply the check-effects-interactions pattern.

Exploit scenario

function withdrawBalance(){
// send userBalance[msg.sender] Ether to msg.sender
// if mgs.sender is a contract, it will call its fallback function
if(! (msg.sender.call.value(userBalance[msg.sender])())){
throw;

}

userBalance[msg.sender] = 0;

Bob uses the re-entrancy bug to call withdrawBalance two times, and withdraw more than its initial
deposit to the contract.

https://cwe.mitre.org/data/definitions/841.html

S Coinsult FrogChain / Security Audit
Error Code Description
SLT: 078 Conformance to numeric notation best practices

@ Low-Risk: Could be fixed, will not bring problems.

Too many digits

Literals with many digits are difficult to read and review.

uint256 private _totalSupply = 300000000000 * 10** decimals;
Recommendation
Use: Ether suffix, Time suffix, or The scientific notation

Exploit scenario

contract MyContract{
uint 1_ether = 10000000000000000000 ;
¥

While 1_ether looks like 1 ether, itis 10 ether. As a result, it’s likely to be used incorrectly.

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#ether-units
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#time-units
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits

© Coinsult FrogChain / Security Audit

Error Code Description

SLT: 054 Missing Events Arithmetic

@ Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic

Detect missing events for critical arithmetic parameters.

function setMarketPairStatus(address account, bool newValue) public onlyOwner {
isMarketPair[account] = newValue;

function setIsTxLimitExempt(address holder, bool exempt) external onlyOwner {
isTxLimitExempt[holder] = exempt;

function setIsExcludedFromFee(address account, bool newValue) public onlyOwner {
isExcludedFromFee[account] = newValue;

Recommendation

Emit an event for critical parameter changes.

Exploit scenario

contract C {

modifier onlyAdmin {
if (msg.sender != owner) throw;

p—

}

function updateOwner(address newOwner) onlyAdmin external {
owner = newOwner;

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-events-arithmetic

@ Coinsult FrogChain / Security Audit

Error Code Description

SWC-135 CWE-1164: Irrelevant Code

@ Low-Risk: Could be fixed, will not bring problems.

Code With No Effects
Detect the usage of redundant statements that have no effect.

function _msgData() internal view virtual returns (bytes memory) {
this;
return msg.data;

Recommendation
Remove redundant statements if they congest code but offer no value.

Exploit scenario

contract RedundantStatementsContract {

constructor() public {
uint; // Elementary Type Name
bool; // Elementary Type Name
RedundantStatementsContract; // Identifier

function test() public returns (uint) {
uint; // Elementary Type Name
assert; // Identifier
test; // Identifier
return 777;

Each commented line references types/identifiers, but performs no action with them, so no code will

be generated for such statements and they can be removed.

https://cwe.mitre.org/data/definitions/1164.html

© Coinsult FrogChain / Security Audit

Maximum Fee Limit Check

Error Code Description

CEN-01 Centralization: Operator Fee Manipulation

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee Description

Transfer fee @ Owner cannot set the transfer fee to 25% or higher
Buy fee @ Owner cannot set the buy fee to 25% or higher
Sell fee @ Owner cannot set the sell fee to 25% or higher
Type of fee Description

Max transfer fee 0%

Max buy fee 3%

Max sell fee 3%

,@ Coinsult FrogChain / Security Audit
Contract Pausability Check
Error Code Description

CEN-02 Centralization: Operator Pausability

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,

users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check Description

Can owner pause the contract? @ Owner cannot pause the contract

@ Coinsult FrogChain / Security Audit

Max Transaction Amount Check

Error Code Description
CEN-03 Centralization: Operator Transaction Manipulation

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to
take place if they abuse this function.

Privilege Check Description

Can owner set max tx amount? @ Owner cannot set max transaction amount

@ Coinsult FrogChain / Security Audit

Exclude From Fees Check

Error Code Description
CEN-04 Centralization: Operator Exclusion

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this

function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check Description
Can owner exclude from fees? @ Owner can exclude from fees
Function

function setIsExcludedFromFee(address account, bool newValue) public onlyOwner {
isExcludedFromFee[account] = newValue;

}

' Coinsult FrogChain / Security Audit

Ability To Mint Check

Error Code Description
CEN-05 Centralization: Operator Increase Supply

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more

tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable
minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check Description

Can owner mint? @ Owner cannot mint new tokens

g Coinsult FrogChain / Security Audit

Ability To Blacklist Check

Error Code Description

CEN-06 Centralization: Operator Dissalows Wallets

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not

allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting

with a smart contract.

Privilege Check Description

Can owner blacklist? @ Owner cannot blacklist addresses

© Coinsult FrogChain / Security Audit
Other Owner Privileges Check
Error Code Description

CEN-100 Centralization: Operator Priviliges

Coinsult lists all important contract methods which the owner can interact with.

® No other important owner privileges to mention.

@ Coinsult FrogChain / Security Audit

Notes

Notes by FrogChain

No notes provided by the team.

Notes by Coinsult

Contract has a ‘saleKeepFee’ amount which will be subtracted from the amount when the token holder

sells all of it’s current tokens.

Burns all tokens from recipient if current block number is smaller than genesisBlock + coolBlock

© Coinsult FrogChain / Security Audit

Contract Snapshot

This is how the constructor of the contract looked at the time of auditing the smart contract.

contract FrogChain is Context, IERC20, Ownable {

using SafeMath for uint256;
using Address for address;

string private _name = unicode"testfrog";
string private _symbol = unicode"FGC";
uint8 private _decimals = 8;

5 Coinsult

FrogChain / Security Audit

Website Review

Coinsult checks the website completely manually and looks for visual, technical and textual errors. We

also look at the security, speed and accessibility of the website. In short, a complete check to see if the

website meets the current standard of the web development industry.

LA B

SUIlLDN

Type of check

Mobile friendly?
Contains jQuery errors?
Is SSL secured?

Contains spelling errors?

b Y

Presale Features Mission Safety Readmap Tekenomy Social media Caontact US Whiteg

L"Il FRoE SlRAIN is an innovative solution to the
"
scalabllity problem with the Ethereum blockchain, and other

current blockchain platforms.

FrogChain relies on a system of 170 Masternodes with
Proof of Stake Voting (POSV) consensus that can support

near-zero fee, and 2-second transaction confirmation time.

Security, stability, and chain finality are guaranteed via
novel technigues such as double validation, staking via

smart-contracts and “true” randomization processes.

Description

@® The website is mobile friendly

@ The website does not contain jQuery errors

@® The website is SSL secured

@ The website does not contain spelling errors

© Coinsult

Certificate of Proof

@ Not KYC verified by Coinsult

FrogChain

Audited by Coinsult.net

:" a
a A ssmh
&

Date: 27 October 2022

v Advanced Manual Smart Contract Audit

FrogChain / Security Audit

@ COi n S u lt coinsult.net

End of report
Smart Contract Audit

CoinsultAudits
info@coinsult.net

coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

