
Coinsult

Advanced Manual

Smart Contract Audit
October 13, 2022

Audit requested by

Bloom
0xbe6DD68261501C1A8dD2d7FF3c2EFA8827b08DCd

Request your audit at coinsult.net

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview

3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges

5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes

6.1 Notes by Coinsult

6.2 Notes by Bloom

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

Bloom / Security Audit

Audit Summary
Audit Scope

Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Bloom / Security Audit

Bloom

https://bloomsocial.io/

Binance Smart Chain

Solidity

0xbe6DD68261501C1A8dD2d7FF3c2EFA8827b08DCd

Static Analysis, Manual Review

13 October 2022

https://bloomsocial.io/

Tokenomics

Rank Address Quantity (Token) Percentage

1  0xbb059140fe74c21fcd903aeb3e5f1ae0280af40a 69,321,600 69.3216%

2  Pinksale: PinkLock V2 30,678,400 30.6784%

Source Code

Coinsult was comissioned by Bloom to perform an audit based on the following code:

https://bscscan.com/address/0xbe6DD68261501C1A8dD2d7FF3c2EFA8827b08DCd#code

Bloom / Security Audit

https://bscscan.com/token/0xbe6DD68261501C1A8dD2d7FF3c2EFA8827b08DCd?a=0xbb059140fe74c21fcd903aeb3e5f1ae0280af40a
https://bscscan.com/token/0xbe6DD68261501C1A8dD2d7FF3c2EFA8827b08DCd?a=0x407993575c91ce7643a4d4ccacc9a98c36ee1bbe

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

Bloom / Security Audit

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Privilege Overview

Coinsult checked the following privileges:

Contract Privilege

Owner can mint?

Owner can blacklist?

Owner can set fees > 25%?

Owner can exclude from fees?

Owner can pause trading?

Owner can set Max TX amount?

More owner priviliges are listed later in the report.

Bloom / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

4 4 0 0

0 0 0 0

0 0 0 0

Description

 Owner cannot mint new tokens

 Owner cannot blacklist addresses

 Owner cannot set the sell fee to 25% or higher

 Owner can exclude from fees

 Owner cannot pause the contract

 Owner cannot set max transaction amount

 Low-Risk: Could be fixed, will not bring problems.

Avoid relying on block.timestamp
block.timestamp can be manipulated by miners.

function function setLpPairsetLpPair((address pairaddress pair,, bool enabled bool enabled)) externalexternal onlyOwner onlyOwner {{
 ifif ((!!enabledenabled)) {{

 lpPairs lpPairs[[pairpair]] == falsefalse;;

 protections protections..setLpPairsetLpPair((pairpair,, falsefalse));;

 }} elseelse {{

 ifif ((timeSinceLastPair timeSinceLastPair !=!= 00)) {{

 requirerequire((blockblock..timestamp timestamp -- timeSinceLastPair > timeSinceLastPair >; 33 days days,, "3 Day cooldown.!""3 Day cooldown.!"));;

 }}

 lpPairs lpPairs[[pairpair]] == truetrue;;

 timeSinceLastPair timeSinceLastPair == block block..timestamptimestamp;;

 protections protections..setLpPairsetLpPair((pairpair,, truetrue));;

 }}

}}

Recommendation
Do not use block.timestamp, now or blockhash as a source of randomness

Exploit scenario

contract Game contract Game {{

 uint reward_determining_number uint reward_determining_number;;

 function function guessingguessing(()) externalexternal{{

 reward_determining_number reward_determining_number == uint256uint256((blockblock..blockhashblockhash((1000010000)))) %% 1010;;

 }}

}}

Eve is a miner. Eve calls guessing and re-orders the block containing the transaction. As a result, Eve
wins the game.

Bloom / Security Audit

 Low-Risk: Could be fixed, will not bring problems.

Too many digits
Literals with many digits are difficult to read and review.

ifif ((ratiosratios..marketing >marketing >; 00)) {{

 ((successsuccess,,)) == _taxWallets _taxWallets..marketingmarketing..callcall{{

 value value:: marketingBalance marketingBalance,,

 gas gas:: 3500035000

 }}((""""));;

}}

ifif ((ratiosratios..BFund >BFund >; 00)) {{

 ((successsuccess,,)) == _taxWallets _taxWallets..BFundBFund..callcall{{

 value value:: BFundBalance BFundBalance,,

 gas gas:: 3500035000

 }}((""""));;

}}

ifif ((ratiosratios..LP >LP >; 00)) {{

 ((successsuccess,,)) == _taxWallets _taxWallets..LPLP..callcall{{valuevalue:: LPBalance LPBalance,, gas gas:: 3500035000}}((""""));;

}}

Recommendation
Use: Ether suffix, Time suffix, or The scientific notation

Exploit scenario

contract MyContractcontract MyContract{{

 uint 1_ether uint 1_ether == 1000000000000000000010000000000000000000;;

}}

While 1_ether looks like 1 ether, it is 10 ether. As a result, it’s likely to be used incorrectly.

Bloom / Security Audit

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#ether-units
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#time-units
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals

 Low-Risk: Could be fixed, will not bring problems.

Missing events arithmetic
Detect missing events for critical arithmetic parameters.

function function setTaxessetTaxes((

 uint16 buyFee uint16 buyFee,,

 uint16 sellFee uint16 sellFee,,

 uint16 transferFee uint16 transferFee

)) externalexternal onlyOwner onlyOwner {{

 requirerequire((!!taxesAreLockedtaxesAreLocked,, "Taxes are locked.""Taxes are locked."));;

 requirerequire((

 buyFee < buyFee <;== maxBuyTaxes & maxBuyTaxes &;&&;

 sellFee < sellFee <;== maxSellTaxes & maxSellTaxes &;&&;

 transferFee < transferFee <;== maxTransferTaxes maxTransferTaxes,,

 " ";Cannot exceed maximumsCannot exceed maximums.."";

));;

 _taxRates _taxRates..buyFee buyFee == buyFee buyFee;;

 _taxRates _taxRates..sellFee sellFee == sellFee sellFee;;

 _taxRates _taxRates..transferFee transferFee == transferFee transferFee;;

}}

Recommendation
Emit an event for critical parameter changes.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

updateOwner() has no event, so it is difficult to track off-chain changes in the buy price.

Bloom / Security Audit

 Low-Risk: Could be fixed, will not bring problems.

Costly operations inside a loop
Costly operations inside a loop might waste gas, so optimizations are justified.

function function multiSendTokensmultiSendTokens((addressaddress[[]] memory accounts memory accounts,, uint256 uint256[[]] memory amounts memory amounts)) externalexternal onlyOwner onlyOwner {{

 requirerequire((accountsaccounts..length length ==== amounts amounts..lengthlength,, "Lengths do not match.""Lengths do not match."));;

 forfor ((uint16 i uint16 i == 00;; i i == amounts amounts[[ii]]**1010****_decimals_decimals,, "Not enough tokens.""Not enough tokens."));;

 finalizeTransferfinalizeTransfer((msgmsg..sendersender,, accounts accounts[[ii]],, amounts amounts[[ii]]**1010****_decimals_decimals,, falsefalse,, falsefalse,, truetrue));;

 }}

}}

Recommendation
Use a local variable to hold the loop computation result.

Exploit scenario

contract CostlyOperationsInLoopcontract CostlyOperationsInLoop{{

 function function badbad(()) externalexternal{{

 forfor ((uint iuint i==00;; i i << loop_count loop_count;; i i++++)){{

 state_variable state_variable++++;;

 }}

 }}

 function function goodgood(()) externalexternal{{

 uint local_variable uint local_variable == state_variable state_variable;;

 forfor ((uint iuint i==00;; i i << loop_count loop_count;; i i++++)){{
 local_variable local_variable++++;;

 }}

 state_variable state_variable == local_variable local_variable;;

 }}

}}

Incrementing state_variable in a loop incurs a lot of gas because of expensive SSTOREs, which
might lead to an out-of-gas.

Bloom / Security Audit

Contract Privileges
Maximum Fee Limit Check

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee

Transfer fee

Buy fee

Sell fee

Type of fee

Max transfer fee

Max buy fee

Max sell fee

Function

function function setTaxessetTaxes((

 uint16 buyFee uint16 buyFee,,

 uint16 sellFee uint16 sellFee,,

 uint16 transferFee uint16 transferFee

)) externalexternal onlyOwner onlyOwner {{

 requirerequire((!!taxesAreLockedtaxesAreLocked,, "Taxes are locked.""Taxes are locked."));;

 requirerequire((

 buyFee < buyFee <;== maxBuyTaxes & maxBuyTaxes &;&&;

 sellFee < sellFee <;== maxSellTaxes & maxSellTaxes &;&&;

 transferFee < transferFee <;== maxTransferTaxes maxTransferTaxes,,

 " ";Cannot exceed maximumsCannot exceed maximums.."";

));;

 _taxRates _taxRates..buyFee buyFee == buyFee buyFee;;

 _taxRates _taxRates..sellFee sellFee == sellFee sellFee;;

 _taxRates _taxRates..transferFee transferFee == transferFee transferFee;;

}}

Bloom / Security Audit

Description

 Owner cannot set the transfer fee to 25% or higher

 Owner cannot set the buy fee to 25% or higher

 Owner cannot set the sell fee to 25% or higher

Description

10%

10%

10%

Contract Pausability Check

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,
users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check

Can owner pause the contract?

Bloom / Security Audit

Description

 Owner cannot pause the contract

Max Transaction Amount Check

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to
take place if they abuse this function.

Privilege Check

Can owner set max tx amount?

Bloom / Security Audit

Description

 Owner cannot set max transaction amount

Exclude From Fees Check

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this
function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check

Can owner exclude from fees?

Function

function function setExcludedFromFeessetExcludedFromFees((address accountaddress account,, bool enabled bool enabled))

 publicpublic

 onlyOwner onlyOwner

{{

 _isExcludedFromFees _isExcludedFromFees[[accountaccount]] == enabled enabled;;

}}

Bloom / Security Audit

Description

 Owner can exclude from fees

Ability To Mint Check

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more
tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable
minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check

Can owner mint?

Bloom / Security Audit

Description

 Owner cannot mint new tokens

Ability To Blacklist Check

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not
allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting
with a smart contract.

Privilege Check

Can owner blacklist?

Bloom / Security Audit

Description

 Owner cannot blacklist addresses

Other Owner Privileges Check

Coinsult lists all important contract methods which the owner can interact with.

 Owner can set external ‘Protections’ address

 Owner can remove accounts from sniper protection

 Trading disabled by default, owner can enable it but never pause it again

 Owner can transfer all BNB within the contract

Bloom / Security Audit

Notes
Notes by Bloom

No notes provided by the team.

Notes by Coinsult

 No notes provided by Coinsult

Bloom / Security Audit

Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

contract Bloom contract Bloom isis IERC20 IERC20 {{

mappingmapping((address address ==>>; uint256 uint256)) privateprivate _tOwned _tOwned;;

mappingmapping((address address ==>>; bool bool)) lpPairs lpPairs;;

uint256 uint256 privateprivate timeSinceLastPair timeSinceLastPair == 00;;

mappingmapping((address address ==>>; mappingmapping((address address ==>>; uint256 uint256)))) privateprivate _allowances _allowances;;

mappingmapping((address address ==>>; bool bool)) privateprivate _liquidityHolders _liquidityHolders;;

mappingmapping((address address ==>>; bool bool)) privateprivate _isExcludedFromProtection _isExcludedFromProtection;;

mappingmapping((address address ==>>; bool bool)) privateprivate _isExcludedFromFees _isExcludedFromFees;;

mappingmapping((address address ==>>; bool bool)) privateprivate presaleAddresses presaleAddresses;;

bool bool privateprivate allowedPresaleExclusion allowedPresaleExclusion == truetrue;;

uint256 uint256 privateprivate constant startingSupply constant startingSupply == 100_000_000100_000_000;;

string string privateprivate constant _name constant _name == "Bloom""Bloom";;

string string privateprivate constant _symbol constant _symbol == "BLM""BLM";;

uint8 uint8 privateprivate constant _decimals constant _decimals == 99;;

uint256 uint256 privateprivate constant _tTotal constant _tTotal == startingSupply startingSupply ** 1010****_decimals_decimals;;

struct Fees struct Fees {{

 uint16 buyFee uint16 buyFee;;

 uint16 sellFee uint16 sellFee;;

 uint16 transferFee uint16 transferFee;;

}}

struct Ratios struct Ratios {{

 uint16 marketing uint16 marketing;;

 uint16 BFund uint16 BFund;;

 uint16 LP uint16 LP;;

 uint16 totalSwap uint16 totalSwap;;

}}

Fees Fees publicpublic _taxRates _taxRates == FeesFees(({{buyFeebuyFee:: 600600,, sellFee sellFee:: 600600,, transferFee transferFee:: 600600}}));;

Ratios Ratios publicpublic _ratios _ratios ==

 RatiosRatios(({{marketingmarketing:: 400400,, BFund BFund:: 100100,, LP LP:: 100100,, totalSwap totalSwap:: 600600}}));;

uint256 uint256 publicpublic constant maxBuyTaxes constant maxBuyTaxes == 10001000;;

ii t256 blibli llt t S llT 1000

Bloom / Security Audit

Website Review
Coinsult checks the website completely manually and looks for visual, technical and textual errors. We
also look at the security, speed and accessibility of the website. In short, a complete check to see if the
website meets the current standard of the web development industry.

Type of check

Mobile friendly?

Contains jQuery errors?

Is SSL secured?

Contains spelling errors?

Bloom / Security Audit

Description

 The website is mobile friendly

 The website does not contain jQuery errors

 The website is SSL secured

 The website does not contain spelling errors

Certificate of Proof
 Not KYC verified by Coinsult

Bloom
Audited by Coinsult.net

Date: 13 October 2022
 Advanced Manual Smart Contract Audit

Bloom / Security Audit

Coinsult

End of report

Smart Contract Audit

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

