
Coinsult

Advanced Manual

Smart Contract Audit
August 31, 2022

 CoinsultAudits

 info@coinsult.net

 coinsult.net

Audit requested by

BUSD Pay
0x4af1a841f9ac1bc559a12314bf61140f04463b28

Request your audit at coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

Table of Contents
1. Audit Summary

1.1 Audit scope

1.2 Tokenomics

1.3 Source Code

2. Disclaimer

3. Global Overview
3.1 Informational issues

3.2 Low-risk issues

3.3 Medium-risk issues

3.4 High-risk issues

4. Vulnerabilities Findings

5. Contract Privileges
5.1 Maximum Fee Limit Check

5.2 Contract Pausability Check

5.3 Max Transaction Amount Check

5.4 Exclude From Fees Check

5.5 Ability to Mint Check

5.6 Ability to Blacklist Check

5.7 Owner Privileges Check

6. Notes
6.1 Notes by Coinsult

6.2 Notes by BUSD Pay

7. Contract Snapshot

8. Website Review

9. Certificate of Proof

BUSD Pay / Security Audit

Audit Summary
Project Name

Website

Blockchain

Smart Contract Language

Contract Address

Audit Method

Date of Audit

This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

BUSD Pay / Security Audit

BUSD Pay

https://busdpay.org

Binance Smart Chain

Solidity

0x4af1a841f9ac1bc559a12314bf61140f04463b28

Static Analysis, Manual Review

31 August 2022

https://busdpay.org/

Audit Scope
Source Code

Coinsult was comissioned by BUSD Pay to perform an audit based on the following code:

https://bscscan.com/address/0x4af1a841f9ac1bc559a12314bf61140f04463b28#code

Note that we only audited the code available to us on this URL at the time of the audit. If the URL
is not from any block explorer (main net), it may be subject to change. Always check the contract
address on this audit report and compare it to the token you are doing research for.

ContractChecker SAFU

Tokenomics

Rank Address Quantity (Token) Percentage

1 0x2c7015a66c8e06b2325f19ada51cf92344cc7a8a 1,000,000,000 100.0000%

BUSD Pay / Security Audit

https://bscscan.com/token/0x4af1a841f9ac1bc559a12314bf61140f04463b28?a=0x2c7015a66c8e06b2325f19ada51cf92344cc7a8a

Audit Method
Coinsult’s manual smart contract audit is an extensive methodical examination and analysis of
the smart contract’s code that is used to interact with the blockchain. This process is conducted
to discover errors, issues and security vulnerabilities in the code in order to suggest
improvements and ways to fix them.

 Automated Vulnerability Check

Coinsult uses software that checks for common vulnerability issues within smart contracts. We
use automated tools that scan the contract for security vulnerabilities such as integer-overflow,
integer-underflow, out-of-gas-situations, unchecked transfers, etc.

 Manual Code Review

Coinsult’s manual code review involves a human looking at source code, line by line, to find
vulnerabilities. Manual code review helps to clarify the context of coding decisions. Automated
tools are faster but they cannot take the developer’s intentions and general business logic into
consideration.

 Used Tools

 Slither: Solidity static analysis framework
 Remix: IDE Developer Tool
 CWE: Common Weakness Enumeration
 SWC: Smart Contract Weakness Classification and Test Cases
 DEX: Testnet Blockchains

BUSD Pay / Security Audit

Risk Classification
Coinsult uses certain vulnerability levels, these indicate how bad a certain issue is. The higher
the risk, the more strictly it is recommended to correct the error before using the contract.

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Coinsult has four statuses that are used for each risk level. Below we explain them briefly.

Risk Status

Total

Pending

Acknowledged

Resolved

BUSD Pay / Security Audit

Description

Does not compromise the functionality of the contract in any way

Won't cause any problems, but can be adjusted for improvement

Will likely cause problems and it is recommended to adjust

Will definitely cause problems, this needs to be adjusted

Description

Total amount of issues within this category

Risks that have yet to be addressed by the team

The team is aware of the risks but does not resolve them

The team has resolved and remedied the risk

Disclaimer
This audit report has been prepared by Coinsult’s experts at the request of the client. In this audit, the
results of the static analysis and the manual code review will be presented. The purpose of the audit is
to see if the functions work as intended, and to identify potential security issues within the smart
contract.

The information in this report should be used to understand the risks associated with the smart
contract. This report can be used as a guide for the development team on how the contract could
possibly be improved by remediating the issues that were identified.

Coinsult is not responsible if a project turns out to be a scam, rug-pull or honeypot. We only provide a
detailed analysis for your own research.

Coinsult is not responsible for any financial losses. Nothing in this contract audit is financial advice,
please do your own research.

The information provided in this audit is for informational purposes only and should not be considered
investment advice. Coinsult does not endorse, recommend, support or suggest to invest in any project.

Coinsult can not be held responsible for when a project turns out to be a rug-pull, honeypot or scam.

BUSD Pay / Security Audit

Global Overview
Manual Code Review

In this audit report we will highlight the following issues:

Vulnerability Level

 Informational

 Low-Risk

 Medium-Risk

 High-Risk

Centralization Risks

Coinsult checked the following privileges:

Contract Privilege

Owner can mint?

Owner can blacklist?

Owner can set fees > 25%?

Owner can exclude from fees?

Owner can pause trading?

Owner can set Max TX amount?

More owner priviliges are listed later in the report.

BUSD Pay / Security Audit

Total Pending Acknowledged Resolved

0 0 0 0

7 7 0 0

0 0 0 0

0 0 0 0

Description

 Owner cannot mint new tokens

 Owner cannot blacklist addresses

 Owner cannot set the sell fee to 25% or higher

 Owner can exclude from fees

 Owner cannot pause the contract

 Owner can set max transaction amount

Error Code

SWC-116

 Low-Risk: Could be fixed, will not bring problems.

Avoid relying on block.timestamp
block.timestamp can be manipulated by miners.

secondsUntilAutoClaimAvailable secondsUntilAutoClaimAvailable == nextClaimTime > nextClaimTime >; block block..timestamp timestamp ??

 nextClaimTime nextClaimTime..subsub((blockblock..timestamptimestamp)) ::

 00;;

Recommendation
Do not use block.timestamp, now or blockhash as a source of randomness

Exploit scenario

contract Game contract Game {{

 uint reward_determining_number uint reward_determining_number;;

 function function guessingguessing(()) externalexternal{{

 reward_determining_number reward_determining_number == uint256uint256((blockblock..blockhashblockhash((1000010000)))) %% 1010;;

 }}

}}

Eve is a miner. Eve calls guessing and re-orders the block containing the transaction. As a result, Eve
wins the game.

BUSD Pay / Security Audit

Description

CWE-829: Inclusion of Functionality from Untrusted Control Sphere

https://cwe.mitre.org/data/definitions/829.html

Error Code

SLT: 078

 Low-Risk: Could be fixed, will not bring problems.

Too many digits
Literals with many digits are difficult to read and review.

function function updateGasForProcessingupdateGasForProcessing((uint256 newValueuint256 newValue)) publicpublic onlyOwner onlyOwner {{

 requirerequire((newValue >newValue >;== 200000200000 & &;&&; newValue < newValue <;== 500000500000,, " ";gasForProcessing must be betwegasForProcessing must be betwe
 requirerequire((newValue newValue !=!= gasForProcessing gasForProcessing,, " ";Cannot update gasForProcessing Cannot update gasForProcessing toto same value" same value";));;

 emit emit GasForProcessingUpdatedGasForProcessingUpdated((newValuenewValue,, gasForProcessing gasForProcessing));;

 gasForProcessing gasForProcessing == newValue newValue;;

}}

Recommendation
Use: Ether suffix, Time suffix, or The scientific notation

Exploit scenario

contract MyContractcontract MyContract{{

 uint 1_ether uint 1_ether == 1000000000000000000010000000000000000000;;

}}

While 1_ether looks like 1 ether, it is 10 ether. As a result, it’s likely to be used incorrectly.

BUSD Pay / Security Audit

Description

Conformance to numeric notation best practices

https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#ether-units
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#time-units
https://solidity.readthedocs.io/en/latest/types.html#rational-and-integer-literals
https://github.com/crytic/slither/wiki/Detector-Documentation#too-many-digits

Error Code

SLT: 056

 Low-Risk: Could be fixed, will not bring problems.

No zero address validation for some functions
Detect missing zero address validation.

function function changeMarketingWalletchangeMarketingWallet((address _marketingWalletaddress _marketingWallet)) externalexternal onlyOwner onlyOwner {{

 requirerequire((_marketingWallet _marketingWallet !=!= marketingWallet marketingWallet,, "Marketing wallet is already that address""Marketing wallet is already that address"));;

 requirerequire((!!isContractisContract((_marketingWallet_marketingWallet)),, "Marketing wallet cannot be a contract""Marketing wallet cannot be a contract"));;

 marketingWallet marketingWallet == _marketingWallet _marketingWallet;;

 emit emit MarketingWalletChangedMarketingWalletChanged((marketingWalletmarketingWallet));;

}}

Recommendation
Check that the new address is not zero.

Exploit scenario

contract C contract C {{

 modifier onlyAdmin modifier onlyAdmin {{

 ifif ((msgmsg..sender sender !=!= owner owner)) throwthrow;;

 _ _;;

 }}

 function function updateOwnerupdateOwner((address newOwneraddress newOwner)) onlyAdmin onlyAdmin externalexternal {{

 owner owner == newOwner newOwner;;

 }}

}}

Bob calls updateOwner without specifying the newOwner, soBob loses ownership of the contract.

BUSD Pay / Security Audit

Description

Missing Zero Address Validation

https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation

Error Code

SLT: 016

 Low-Risk: Could be fixed, will not bring problems.

Functions that send Ether to arbitrary destinations
Unprotected call to a function sending Ether to an arbitrary address.

function function sendBNBsendBNB((address payable recipientaddress payable recipient,, uint256 amount uint256 amount)) internalinternal {{

 requirerequire((addressaddress((thisthis))..balance >balance >;== amount amount,, "Address: insufficient balance""Address: insufficient balance"));;

 ((bool successbool success,,)) == recipient recipient..callcall{{valuevalue:: amount amount}}((""""));;

 requirerequire((successsuccess,, "Address: unable to send value, recipient may have reverted""Address: unable to send value, recipient may have reverted"));;

}}

Recommendation
Ensure that an arbitrary user cannot withdraw unauthorized funds.

Exploit scenario

contract ArbitrarySendcontract ArbitrarySend{{

 address destination address destination;;

 function function setDestinationsetDestination(()){{

 destination destination == msg msg..sendersender;;

 }}

 function function withdrawwithdraw(()) publicpublic{{

 destination destination..transfertransfer((thisthis..balancebalance));;

 }}

}}

Bob calls setDestination and withdraw. As a result he withdraws the contract’s balance.

BUSD Pay / Security Audit

Description

Functions that send Ether to arbitrary destinations

https://github.com/crytic/slither/wiki/Detector-Documentation#functions-that-send-ether-to-arbitrary-destinations

Error Code

SWC-104

 Low-Risk: Could be fixed, will not bring problems.

Unchecked transfer
The return value of an external transfer/transferFrom call is not checked.

function function claimStuckTokensclaimStuckTokens((address tokenaddress token)) externalexternal onlyOwner onlyOwner {{

 requirerequire((token token !=!= addressaddress((thisthis)),, "Owner cannot claim native tokens""Owner cannot claim native tokens"));;

 ifif ((token token ==== addressaddress((0x00x0)))) {{

 payablepayable((msgmsg..sendersender))..transfertransfer((addressaddress((thisthis))..balancebalance));;

 returnreturn;;

 }}

 IERC20 ERC20token IERC20 ERC20token == IERC20IERC20((tokentoken));;

 uint256 balance uint256 balance == ERC20token ERC20token..balanceOfbalanceOf((addressaddress((thisthis))));;

 ERC20token ERC20token..transfertransfer((msgmsg..sendersender,, balance balance));;

}}

Recommendation
Use SafeERC20, or ensure that the transfer/transferFrom return value is checked.

Exploit scenario

contract Token contract Token {{

 function function transferFromtransferFrom((address _fromaddress _from,, address _to address _to,, uint256 _value uint256 _value)) publicpublic returnsreturns ((bool successbool success));;

}}

contract MyBankcontract MyBank{{

 mappingmapping((address address ==>> uint uint)) balances balances;;

 Token token Token token;;

 function function depositdeposit((uint amountuint amount)) publicpublic{{

 token token..transferFromtransferFrom((msgmsg..sendersender,, addressaddress((thisthis)),, amount amount));;

 balances balances[[msgmsg..sendersender]] +=+= amount amount;;

 }}

}}

Several tokens do not revert in case of failure and return false. If one of these tokens is used
in MyBank, deposit will not revert if the transfer fails, and an attacker can call deposit for free..

BUSD Pay / Security Audit

Description

CWE-252: Unchecked Return Value

https://cwe.mitre.org/data/definitions/252.html

Error Code

SLT: 038

 Low-Risk: Could be fixed, will not bring problems.

Divide before multiply
Solidity integer division might truncate. As a result, performing multiplication before division can
sometimes avoid loss of precision.

uint256 fees uint256 fees == ((amount amount ** _totalFees _totalFees)) // 10001000;;

amount amount == amount amount -- fees fees;;

ifif ((burnTaxShare >burnTaxShare >; 00))

{{

 uint256 burnTaxTokens uint256 burnTaxTokens == ((fees fees ** burnTaxShare burnTaxShare)) // _totalFees _totalFees;;

 fees fees -=-= burnTaxTokens burnTaxTokens;;

 supersuper.._transfer_transfer((fromfrom,,DEADDEAD,,burnTaxTokensburnTaxTokens));;

}}

Recommendation
Consider ordering multiplication before division.

Exploit scenario

contract A contract A {{

	 function 	 function ff((uint nuint n)) publicpublic {{

 coins coins == ((oldSupply oldSupply // n n)) ** interest interest;;

 }}

}}

If n is greater than oldSupply, coins will be zero. For example, with oldSupply = 5; n = 10,
interest = 2, coins will be zero. If (oldSupply * interest / n) was used, coins would have
been 1. In general, it’s usually a good idea to re-arrange arithmetic to perform multiplication before
division, unless the limit of a smaller type makes this dangerous.

BUSD Pay / Security Audit

Description

Imprecise arithmetic operations order

https://github.com/crytic/slither/wiki/Detector-Documentation#divide-before-multiply

Error Code

SLT: 062

 Low-Risk: Could be fixed, will not bring problems.

Boolean equality
Detects the comparison to boolean constants.

ifif ((maxWalletLimitEnabledmaxWalletLimitEnabled))

{{

 ifif ((_isExcludedFromMaxWalletLimit_isExcludedFromMaxWalletLimit[[fromfrom]] ==== falsefalse & &;&&;

 _isExcludedFromMaxWalletLimit _isExcludedFromMaxWalletLimit[[toto]] ==== falsefalse & &;&&;

 toto !=!= uniswapV2Pair uniswapV2Pair

)) {{

 uint balance uint balance == balanceOfbalanceOf((toto));;

 requirerequire((

 balance balance ++ amount < amount <;== maxWalletAmount maxWalletAmount,,

 " ";MaxWalletMaxWallet:: Recipient exceeds the maxWalletAmount" Recipient exceeds the maxWalletAmount";
));;

 }}

}}

Recommendation
Remove the equality to the boolean constant.

Exploit scenario

contract A contract A {{

	 function 	 function ff((bool xbool x)) publicpublic {{

	 		 	 // ...// ...

 ifif ((x x ==== truetrue)) {{ // bad!// bad!

 // ...// ...

 }}

	 		 	 // ...// ...

		 }}

}}

Boolean constants can be used directly and do not need to be compare to true or false.

BUSD Pay / Security Audit

Description

Comparison to boolean constant

https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-equality

Maximum Fee Limit Check

Error Code

CEN-01

Coinsult tests if the owner of the smart contract can set the transfer, buy or sell fee to 25% or more. It
is bad practice to set the fees to 25% or more, because owners can prevent healthy trading or even
stop trading when the fees are set too high.

Type of fee

Transfer fee

Buy fee

Sell fee

Type of fee

Max transfer fee

Max buy fee

Max sell fee

BUSD Pay / Security Audit

Description

Centralization: Operator Fee Manipulation

Description

 Owner cannot set the transfer fee to 25% or higher

 Owner cannot set the buy fee to 25% or higher

 Owner cannot set the sell fee to 25% or higher

Description

-

-

-

Contract Pausability Check

Error Code

CEN-02

Coinsult tests if the owner of the smart contract has the ability to pause the contract. If this is the case,
users can no longer interact with the smart contract; users can no longer trade the token.

Privilege Check

Can owner pause the contract?

BUSD Pay / Security Audit

Description

Centralization: Operator Pausability

Description

 Owner cannot pause the contract

Max Transaction Amount Check

Error Code

CEN-03

Coinsult tests if the owner of the smart contract can set the maximum amount of a transaction. If the
transaction exceeds this limit, the transaction will revert. Owners could prevent normal transactions to
take place if they abuse this function.

Privilege Check

Can owner set max tx amount?

BUSD Pay / Security Audit

Description

Centralization: Operator Transaction Manipulation

Description

 Owner can set max transaction amount

Exclude From Fees Check

Error Code

CEN-04

Coinsult tests if the owner of the smart contract can exclude addresses from paying tax fees. If the
owner of the smart contract can exclude from fees, they could set high tax fees and exclude
themselves from fees and benefit from 0% trading fees. However, some smart contracts require this
function to exclude routers, dex, cex or other contracts / wallets from fees.

Privilege Check

Can owner exclude from fees?

BUSD Pay / Security Audit

Description

Centralization: Operator Exclusion

Description

 Owner can exclude from fees

Ability To Mint Check

Error Code

CEN-05

Coinsult tests if the owner of the smart contract can mint new tokens. If the contract contains a mint
function, we refer to the token’s total supply as non-fixed, allowing the token owner to “mint” more
tokens whenever they want.

A mint function in the smart contract allows minting tokens at a later stage. A method to disable
minting can also be added to stop the minting process irreversibly.

Minting tokens is done by sending a transaction that creates new tokens inside of the token smart
contract. With the help of the smart contract function, an unlimited number of tokens can be created
without spending additional energy or money.

Privilege Check

Can owner mint?

BUSD Pay / Security Audit

Description

Centralization: Operator Increase Supply

Description

 Owner cannot mint new tokens

Ability To Blacklist Check

Error Code

CEN-06

Coinsult tests if the owner of the smart contract can blacklist accounts from interacting with the smart
contract. Blacklisting methods allow the contract owner to enter wallet addresses which are not
allowed to interact with the smart contract.

This method can be abused by token owners to prevent certain / all holders from trading the token.
However, blacklists might be good for tokens that want to rule out certain addresses from interacting
with a smart contract.

Privilege Check

Can owner blacklist?

BUSD Pay / Security Audit

Description

Centralization: Operator Dissalows Wallets

Description

 Owner cannot blacklist addresses

Other Owner Privileges Check

Error Code

CEN-100

Coinsult lists all important contract methods which the owner can interact with.

 Owner can set max wallet amount

BUSD Pay / Security Audit

Description

Centralization: Operator Priviliges

Notes
Notes by BUSD Pay

No notes provided by the team.

Notes by Coinsult

When changing tax fees, multiply the tax fees by 10. So when entering 3%, enter 30 instead of 3. The
contract is setup this way.

 Max transaction amount sell cannot be lower than current amount

 Max wallet percentage cannot be lower than 2%

BUSD Pay / Security Audit

Contract Snapshot
This is how the constructor of the contract looked at the time of auditing the smart contract.

contract BUSDPay contract BUSDPay isis ERC20 ERC20,, Ownable Ownable {{

uint256 uint256 publicpublic rewardFeeOnBuy rewardFeeOnBuy == 4040;;

uint256 uint256 publicpublic marketingFeeOnBuy marketingFeeOnBuy == 4040;;

uint256 uint256 publicpublic liquidityFeeOnBuy liquidityFeeOnBuy == 1010;;

uint256 uint256 publicpublic burnTaxFeeOnBuy burnTaxFeeOnBuy == 1010;;

uint256 uint256 publicpublic rewardFeeOnSell rewardFeeOnSell == 8080;;

uint256 uint256 publicpublic marketingFeeOnSell marketingFeeOnSell == 5050;;

uint256 uint256 publicpublic liquidityFeeOnSell liquidityFeeOnSell == 1010;;

uint256 uint256 publicpublic burnTaxFeeOnSell burnTaxFeeOnSell == 1010;;

uint256 uint256 publicpublic totalBuyFee totalBuyFee == 100100;;

uint256 uint256 publicpublic totalSellFee totalSellFee == 150150;;

uint256 uint256 publicpublic walletToWalletFee walletToWalletFee == 00;;

address address publicpublic marketingWallet marketingWallet == 0x3C1619D25837390C55850809fCD9a19875b8Be0B0x3C1619D25837390C55850809fCD9a19875b8Be0B;;

address address publicpublic operatoroperator;;

IUniswapV2Router02 IUniswapV2Router02 publicpublic uniswapV2Router uniswapV2Router;;

address address publicpublic uniswapV2Pair uniswapV2Pair;;

address address privateprivate DEAD DEAD == 0x000000000000000000000000000000000000dEaD0x000000000000000000000000000000000000dEaD;;

bool bool privateprivate swapping swapping;;

uint256 uint256 publicpublic swapTokensAtAmount swapTokensAtAmount;;

mappingmapping ((address address ==>>; bool bool)) privateprivate _isExcludedFromFees _isExcludedFromFees;;

DividendTracker DividendTracker publicpublic dividendTracker dividendTracker;;

address address publicpublic constant rewardToken constant rewardToken == 0xe9e7CEA3DedcA5984780Bafc599bD69ADd087D560xe9e7CEA3DedcA5984780Bafc599bD69ADd087D56;;//BUSD//BUSD

uint256 uint256 publicpublic gasForProcessing gasForProcessing == 300000300000;;

event event ExcludeFromFeesExcludeFromFees((address indexed accountaddress indexed account,, bool isExcluded bool isExcluded));;

event event FeesBuyUpdatedFeesBuyUpdated((uint256 rewardFeeOnBuyuint256 rewardFeeOnBuy,,uint256 marketingFeeOnBuyuint256 marketingFeeOnBuy,,uint256 liquidityFeeOnBuyuint256 liquidityFeeOnBuy,,uint256 uint256

ll d d(i d ll i k i ll i li idi ll i

BUSD Pay / Security Audit

Certificate of Proof
 Not KYC verified by Coinsult

BUSD Pay
Audited by Coinsult.net

Date: 31 August 2022
 Advanced Manual Smart Contract Audit

BUSD Pay / Security Audit

Coinsult

End of report

Smart Contract Audit
 CoinsultAudits

 info@coinsult.net

 coinsult.net

Request your smart contract audit / KYC

t.me/coinsult_tg

coinsult.net

https://twitter.com/coinsultaudits
mailto:info@coinsult.net
https://coinsult.net/

